RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FIRST SEMESTER EXAMINATION, DECEMBER 2016

FIRST YEAR [BATCH 2016-19]

COMPUTER SCIENCE [General]

Date : 15/12/2016 Time : 11 am - 1 pm

Answer any one question :

Paper : I

Full Marks : 50

[Use a separate Answer Book for each Group]

$\underline{Group-A}$

 b) Find the Gray code for the binary code (111001)₂. a) Perform the following conversion : (101101·1101)₂ = (?)₈. b) What is the 2's complement of (1010101)₂? Answer any two questions : [2×1] 3. a) Represent the unsigned decimal numbers 965 and 672 in BCD and then show the steps necessary to form their sum. [10] b) Using 1's complement method, subtract (11011)₂ from (1001)₂. [2] c) Determine the base of the number for the following operation to be correct : 24 + 17 = 40 [2] d) Write a short note on Hamming code. [2] 4. a) Draw the circuit diagram for 3-bit even parity generator. [3] b) Using Boolean algebra, simplify the following Boolean expression to a minimum number of litertals (BC' + AD)(AB' + CD'). c) Write De Morgan's Laws. [3] d) Using XOR gate, design an inverter. [3] a) Design a circuit to convert a 3-bit Gray Code to its equivalent Excess-3 code. [4] b) Simplify the following Boolean function F, together with the don't care condition d, into sum of minterms. F(A, B, C, D) = ∑(1, 3, 5, 7, 9, 15); d(A, B, C, D) = ∑(4, 6, 12, 13). [4] 6. a) Convert the following sum-of-product expression to its equivalent product-of-sum from f(A, B, C) = ABC + AB'C + AB'C + AB'C + AB'C + AB'C + [4] b) A 12 bit Hamming code word containing 8 bits of data and 4 parity bits is read from memory. What was the original 8-bit data word that was written into memory if the 12-bit word read out is 0 0 0 1 1 0 0 1 0 1 0 0. Consider only single bit error may be occurred. [4] 7. Design a 3-bit Universal Shift Register (USR) by explaining its operation. [2-5+2-2] 8. What is a zero address instruction? Write down the program to evaluate X = (A+B)*(C+D) for a stack-organized computer and identify the zero address instructions. [1+3+4] Answer any two questions : [1+3+4] Answer any two questions : [2+5+2] 8. What is a zero address instruct	1.	a)	Find the complement of the function : $f(x, y, z) = xyz' + x'yz + xy'z'$.	[2]				
 2. a) Perform the following conversion : (101101·1101)₂ = (?)₈. [] b) What is the 2's complement of (1010101)₂? Answer any two questions : [2×1] 3. a) Represent the unsigned decimal numbers 965 and 672 in BCD and then show the steps necessary to form their sum. [] b) Using 1's complement method, subtract (11011)₂ from (1001)₂. [] c) Determine the base of the number for the following operation to be correct : 24 + 17 = 40 [] d) Write a short note on Hamming code. [] 4. a) Draw the circuit diagram for 3-bit even parity generator. [] b) Using Boolean algebra, simplify the following Boolean expression to a minimum number of literals (BC' + AD)(AB' + CD'). [] c) Write De Morgan's Laws. [] d) Using XOR gate, design an inverter. [] 5. a) Design a circuit to convert a 3-bit Gray Code to its equivalent Excess-3 code. [] b) Simplify the following Boolean function F, together with the don't care condition d, into sum of minterms. F(A, B, C, D) = ∑(1, 3, 5, 7, 9, 15); d(A, B, C, D) = ∑(4, 6, 12, 13). [] 6. a) Convert the following sum-of-product expression to its equivalent product-of-sum from f(A, B, C) = ABC + AB'C' + ABC' + A'B'C. [] b) A 12 bit Hamming code word containing 8 bits of data and 4 parity bits is read from memory. What was the original 8-bit data word that was written into memory if the 12-bit word read out is 0 0 0 1 1 0 0 1 0 1 0 0. Consider only single bit error may be occurred. [] 7. Design a 3-bit Universal Shift Register (USR) by explaining its operation. [] 7. Design a 2-bit comparator circuit with necessary logic gates. [] 8. What is a zero address instruction? Write down the program to evaluate X = (A+B)*(C+D) for a stack-organized computer and identify the zero address instruction? [] 9. a) Design a 2-bit comparator circuit with necessary logic gates. [] b) How does a master-slave flop-flop avoid the race-arou		b)	Find the Gray code for the binary code $(111001)_2$.	[3]				
b) What is the 2's complement of $(1010101)_2$? Answer <u>any two</u> questions : [2×1] 3. a) Represent the unsigned decimal numbers 965 and 672 in BCD and then show the steps necessary to form their sum. [2×1] b) Using 1's complement method, subtract $(11011)_2$ from $(1001)_2$. [2] c) Determine the base of the number for the following operation to be correct : $24 + 17 = 40$ [2] d) Write a short note on Hamming code. [2] 4. a) Draw the circuit diagram for 3-bit even parity generator. [2] b) Using Boolean algebra, simplify the following Boolean expression to a minimum number of literals (BC' + A'D)(AB' + CD'). [2] c) Write De Morgan's Laws. [2] d) Using XOR gate, design an inverter. [2] 5. a) Design a circuit to convert a 3-bit Gray Code to its equivalent Excess-3 code. [3] b) Simplify the following Boolean function F, together with the don't care condition d, into sum of minterms. F(A, B, C, D) = $\sum (1, 3, 5, 7, 9, 15)$; $d(A, B, C, D) = \sum (4, 6, 12, 13)$. [3] 6. a) Convert the following sone-of-product expression to its equivalent product-of-sum from f(A, B, C) = ABC + AB'C' + AB'C + ABC' + A'B'C. [4] b) A 12 bit Hamming code word containing 8 bits of data and 4 parity bits is read from memory. What was the original 8-bit data word that was written into memory if the 12-bit word read out is $0 \ 0 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0$	2.	a)	Perform the following conversion : $(101101 \cdot 1101)_2 = (?)_8$.	[3]				
Answer <u>any two</u> questions: [2×1] 3. a) Represent the unsigned decimal numbers 965 and 672 in BCD and then show the steps necessary to form their sum. [] b) Using 1's complement method, subtract (11011) ₂ from (1001) ₂ . [] c) Determine the base of the number for the following operation to be correct: $24 + 17 = 40$ [] d) Write a short note on Hamming code. [] 4. a) Draw the circuit diagram for 3-bit even parity generator. [] b) Using Boolean algebra, simplify the following Boolean expression to a minimum number of literals (BC' + A'D)(AB' + CD'). [] c) Write De Morgan's Laws. [] d) Using XOR gate, design an inverter. [] 5. a) Design a circuit to convert a 3-bit Gray Code to its equivalent Excess-3 code. [] b) Simplify the following Boolean function F, together with the don't care condition d, into sum of minterms. F(A, B, C, D) = $\sum (1, 3, 5, 7, 9, 15); d(A, B, C, D) = \sum (4, 6, 12, 13).$ [] 6. a) Convert the following sum-of-product expression to its equivalent product-of-sum from $f(A, B, C) = ABC + ABC' + ABC' + ABC' + A'BC'.$ [] b) A 12 bit Hamming code word containing 8 bits of data and 4 parity bits is read from memory. What was the original 8-bit data word that was written into memory if the 12-bit word read out is $0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ $		b)	What is the 2's complement of (1010101) ₂ ?	[2]				
 3. a) Represent the unsigned decimal numbers 965 and 672 in BCD and then show the steps necessary to form their sum. b) Using 1's complement method, subtract (11011)₂ from (1001)₂. c) Determine the base of the number for the following operation to be correct : 24 + 17 = 40 d) Write a short note on Hamming code. 4. a) Draw the circuit diagram for 3-bit even parity generator. b) Using Boolean algebra, simplify the following Boolean expression to a minimum number of literals (BC' + A'D)(AB' + CD'). c) Write De Morgan's Laws. d) Using XOR gate, design an inverter. 3. a) Design a circuit to convert a 3-bit Gray Code to its equivalent Excess-3 code. b) Simplify the following Boolean function F, together with the don't care condition d, into sum of minterms. F(A, B, C, D) = ∑(1,3,5,7,9,15); d(A, B, C, D) = ∑(4,6,12,13). 6. a) Convert the following sum-of-product expression to its equivalent product-of-sum from f(A, B, C) = ABC + AB'C' + AB'C + AB'C + AB'C + AB'C + C = ABC' + AB'C +	An	Answer <u>any two</u> questions : [2×10]						
 c) Defermine the base of the number for the following operation to be correct : 24 + 17 = 40 d) Write a short note on Hamming code. 4. a) Draw the circuit diagram for 3-bit even parity generator. b) Using Boolean algebra, simplify the following Boolean expression to a minimum number of literals (BC' + A'D)(AB' + CD'). c) Write De Morgan's Laws. d) Using XOR gate, design an inverter. 5. a) Design a circuit to convert a 3-bit Gray Code to its equivalent Excess-3 code. b) Simplify the following Boolean function F, together with the don't care condition d, into sum of minterms. F(A, B, C, D) = ∑(1, 3, 5, 7, 9, 15); d(A, B, C, D) = ∑(4, 6, 12, 13). 6. a) Convert the following sum-of-product expression to its equivalent product-of-sum from f(A, B, C) = ABC + AB'C' + AB'C + AB'C'. b) A 12 bit Hamming code word containing 8 bits of data and 4 parity bits is read from memory. What was the original 8-bit data word that was written into memory if the 12-bit word read out is 0 0 0 1 1 0 0 1 0 0. Consider only single bit error may be occurred. Caroup – B Answer any one question : [1>x [1>x [1>x 9. a) Design a 2-bit comparator circuit with necessary logic gates. b) How does a master-slave flop-flop avoid the race-around condition? c) Convert a D flip-flop into a T flipflop. 	3.	a) b)	Represent the unsigned decimal numbers 965 and 672 in BCD and then show the steps necessary to form their sum. Using 1's complement method, subtract (11011) ₂ from (1001) ₂	[3]				
 4. a) Draw the circuit diagram for 3-bit even parity generator. b) Using Boolean algebra, simplify the following Boolean expression to a minimum number of literals (BC' + A'D)(AB' + CD'). c) Write De Morgan's Laws. d) Using XOR gate, design an inverter. 5. a) Design a circuit to convert a 3-bit Gray Code to its equivalent Excess-3 code. b) Simplify the following Boolean function F, together with the don't care condition d, into sum of minterms. F(A, B, C, D) = ∑(1,3,5,7,9,15); d(A, B, C, D) = ∑(4,6,12,13). 6. a) Convert the following sum-of-product expression to its equivalent product-of-sum from f(A, B, C) = ABC + AB'C' + AB'C + AB'C. b) A 12 bit Hamming code word containing 8 bits of data and 4 parity bits is read from memory. What was the original 8-bit data word that was written into memory if the 12-bit word read out is 0 0 0 1 1 0 0 1 0 1 0 0. Consider only single bit error may be occurred. Coroup - B Answer any one question : [1×7. Design a 3-bit Universal Shift Register (USR) by explaining its operation. [2·5+2·2 8. What is a zero address instruction? Write down the program to evaluate X = (A+B)*(C+D) for a stack-organized computer and identify the zero address instructions. [1+3+ Answer any two questions : [2×1] 9. a) Design a 2-bit comparator circuit with necessary logic gates. b) How does a master-slave flop-flop avoid the race-around condition? c) Convert a D flip-flop into a T flipflop. 		c) d)	Determine the base of the number for the following operation to be correct : $24 + 17 = 40$ Write a short note on Hamming code.	[2] [2] [3]				
 c) Write De Morgan's Laws. d) Using XOR gate, design an inverter. 5. a) Design a circuit to convert a 3-bit Gray Code to its equivalent Excess-3 code. b) Simplify the following Boolean function F, together with the don't care condition d, into sum of minterms. F(A, B, C, D) = ∑(1,3,5,7,9,15); d(A, B, C, D) = ∑(4,6,12,13). 6. a) Convert the following sum-of-product expression to its equivalent product-of-sum from f(A, B, C) = ABC + AB'C + AB'C + ABC' + A'B'C. b) A 12 bit Hamming code word containing 8 bits of data and 4 parity bits is read from memory. What was the original 8-bit data word that was written into memory if the 12-bit word read out is 0 0 0 1 1 0 0 1 0 1 0 0. Consider only single bit error may be occurred. Caroup – B Answer any one question : [1×7. Design a 3-bit Universal Shift Register (USR) by explaining its operation. [2-5+2-2:8. What is a zero address instruction? Write down the program to evaluate X = (A+B)*(C+D) for a stack-organized computer and identify the zero address instructions. [1+3+ Answer any two questions : [2×1] 9. a) Design a 2-bit comparator circuit with necessary logic gates. b) How does a master-slave flop-flop avoid the race-around condition? c) Convert a D flip-flop into a T flipflop. 	4.	a) b)	Draw the circuit diagram for 3-bit even parity generator. Using Boolean algebra, simplify the following Boolean expression to a minimum number of literals $(BC' + A'D)(AB' + CD')$.	[2] [3]				
 5. a) Design a circuit to convert a 3-bit Gray Code to its equivalent Excess-3 code. b) Simplify the following Boolean function F, together with the don't care condition d, into sum of minterms. F(A, B, C, D) = ∑(1,3,5,7,9,15); d(A, B, C, D) = ∑(4,6,12,13). 6. a) Convert the following sum-of-product expression to its equivalent product-of-sum from f(A, B, C) = ABC + AB'C' + AB'C + ABC' + A'B'C. b) A 12 bit Hamming code word containing 8 bits of data and 4 parity bits is read from memory. What was the original 8-bit data word that was written into memory if the 12-bit word read out is 0 0 0 1 1 0 0 1 0 1 0 0. Consider only single bit error may be occurred. Caroup – B Answer any one question : [1×7. Design a 3-bit Universal Shift Register (USR) by explaining its operation. [2·5+2·8. What is a zero address instruction? Write down the program to evaluate X = (A+B)*(C+D) for a stack-organized computer and identify the zero address instructions. [1+3+ Answer any two questions : [2×1] 9. a) Design a 2-bit comparator circuit with necessary logic gates. b) How does a master-slave flop-flop avoid the race-around condition? c) Convert a D flip-flop into a T flipflop. 		c) d)	Write De Morgan's Laws. Using XOR gate, design an inverter.	[2] [3]				
 6. a) Convert the following sum-of-product expression to its equivalent product-of-sum from f(A, B, C) = ABC + AB'C' + AB'C + A'B'C . b) A 12 bit Hamming code word containing 8 bits of data and 4 parity bits is read from memory. What was the original 8-bit data word that was written into memory if the 12-bit word read out is 0 0 0 1 1 0 0 1 0 1 0 0. Consider only single bit error may be occurred. <i>Group – B</i> <i>Answer any one question</i> : [1> 7. Design a 3-bit Universal Shift Register (USR) by explaining its operation. [2·5+2-8. What is a zero address instruction? Write down the program to evaluate X = (A+B)*(C+D) for a stack-organized computer and identify the zero address instructions. [1+3+ <i>Answer any two questions</i> : [2×19. a) Design a 2-bit comparator circuit with necessary logic gates. b) How does a master-slave flop-flop avoid the race-around condition? [1] 	5.	a) b)	Design a circuit to convert a 3-bit Gray Code to its equivalent Excess-3 code. Simplify the following Boolean function F, together with the don't care condition d, into sum of minterms. $F(A, B, C, D) = \sum (1, 3, 5, 7, 9, 15)$; $d(A, B, C, D) = \sum (4, 6, 12, 13)$.	[5] [5]				
 b) A 12 bit Hamming code word containing 8 bits of data and 4 parity bits is read from memory. What was the original 8-bit data word that was written into memory if the 12-bit word read out is 0 0 0 1 1 0 0 1 0 1 0 0. Consider only single bit error may be occurred. <u>Group – B</u> Answer any one question : [1> 7. Design a 3-bit Universal Shift Register (USR) by explaining its operation. [2·5+2-3. 8. What is a zero address instruction? Write down the program to evaluate X = (A+B)*(C+D) for a stack-organized computer and identify the zero address instructions. [1+3+ Answer any two questions : [2×1 9. a) Design a 2-bit comparator circuit with necessary logic gates. b) How does a master-slave flop-flop avoid the race-around condition? c) Convert a D flip-flop into a T flipflop. 	6.	a)	Convert the following sum-of-product expression to its equivalent product-of-sum from $f(A, B, C) = ABC + AB'C' + AB'C + ABC' + A'B'C$.	[6]				
Group – B [1× Answer any one question : [1× 7. Design a 3-bit Universal Shift Register (USR) by explaining its operation. [2·5+2·4] 8. What is a zero address instruction? Write down the program to evaluate X = (A+B)*(C+D) for a stack-organized computer and identify the zero address instructions. [1+3+ Answer any two questions : [2×1] 9. a) Design a 2-bit comparator circuit with necessary logic gates. [b) How does a master-slave flop-flop avoid the race-around condition? [c) Convert a D flip-flop into a T flipflop. [b)	A 12 bit Hamming code word containing 8 bits of data and 4 parity bits is read from memory. What was the original 8-bit data word that was written into memory if the 12-bit word read out is 000110010100 . Consider only single bit error may be occurred.	[4]				
 Answer <u>any one question</u>: [1> 7. Design a 3-bit Universal Shift Register (USR) by explaining its operation. [2·5+2- 8. What is a zero address instruction? Write down the program to evaluate X = (A+B)*(C+D) for a stack-organized computer and identify the zero address instructions. [1+3+ Answer <u>any two questions</u>: [2×1 9. a) Design a 2-bit comparator circuit with necessary logic gates. [2×1 b) How does a master-slave flop-flop avoid the race-around condition? [2<00, 100, 100, 100, 100, 100, 100, 100,	<u>Group – B</u>							
 7. Design a 3-bit Universal Shift Register (USR) by explaining its operation. [2·5+2 8. What is a zero address instruction? Write down the program to evaluate X = (A+B)*(C+D) for a stack-organized computer and identify the zero address instructions. [1+3+ Answer any two questions : [2×1 9. a) Design a 2-bit comparator circuit with necessary logic gates. [b) How does a master-slave flop-flop avoid the race-around condition? [c) Convert a D flip-flop into a T flipflop. [An	swer	any one question :	[1×5]				
 8. What is a zero address instruction? Write down the program to evaluate X = (A+B)*(C+D) for a stack-organized computer and identify the zero address instructions. [1+3+ Answer any two questions : [2×1] 9. a) Design a 2-bit comparator circuit with necessary logic gates. [b) How does a master-slave flop-flop avoid the race-around condition? [c) Convert a D flip-flop into a T flipflop. [7.	Des	sign a 3-bit Universal Shift Register (USR) by explaining its operation. [2.5-	+2.5]				
Answer any two questions : [2×1] 9. a) Design a 2-bit comparator circuit with necessary logic gates. [b) How does a master-slave flop-flop avoid the race-around condition? [c) Convert a D flip-flop into a T flipflop. [8.	Wh stac	What is a zero address instruction? Write down the program to evaluate $X = (A+B)*(C+D)$ for a stack-organized computer and identify the zero address instructions. [1+3+1]					
 9. a) Design a 2-bit comparator circuit with necessary logic gates. b) How does a master-slave flop-flop avoid the race-around condition? c) Convert a D flip-flop into a T flipflop. 	An	swer	<u>any two</u> questions : [2	2×10]				
	9.	a) b) c)	Design a 2-bit comparator circuit with necessary logic gates. How does a master-slave flop-flop avoid the race-around condition? Convert a D flip-flop into a T flipflop.	[4] [3] [3]				

10.	a)	'A 3-to-8 decoder with an Enable input is a 1-to-8-demultiplexer' — Explain.	[3]
	b)	Implement the following logic function using 8 : 1 multiplexer.	
		$F(A, B, C, D) = \sum m(1, 2, 5, 6, 7, 8, 10, 12, 13, 15).$	[3]
	c)	What is the role of the cache memory in the memory hierarchy?	[2]
	d)	Differentiate between SRAM and DRAM.	[2]
11.	a)	Design a synchronous counter which will count the following states 0, 3, 5, 6, 0, [Use negative edge triggered T flip flop]	e [5]
	b)	Explain program-controlled I/O method.	[3]
	c)	What is meant by the register addressing mode?	[2]
12.	a)	Realise a J-K flip flop using a S-R flip flop.	[4]
	b)	What are the basic components of the Von Neumann architecture.	[2]
	c)	Design a full subtractor. Also write down its working principle.	[2+2]

_____ × _____